

Follow-up on M/L/N Languages

Thomas Sewell UNSW Term 3 2024

1

・ロト ・日下・ ・ ヨト

On Admissibility and Derivability

Recapping from Tuesday's lecture:

Given a unary judgement **J** defined by inference rules $l_1 \dots l_n$, a new inference rule l_x is

- *derivable* if the conclusion of I_{\times} can be derived via rules $I_1 \dots I_n$ from its premises as local axioms
- *admissible* if the judgement J' defined by $I_1 \dots I_n$, I_x is true for the same set of values as J

On Admissibility and Derivability

Recapping from Tuesday's lecture:

Given a unary judgement **J** defined by inference rules $l_1 \dots l_n$, a new inference rule l_x is

- *derivable* if the conclusion of I_x can be derived via rules $I_1 \dots I_n$ from its premises as local axioms
- *admissible* if the judgement J' defined by $I_1 \dots I_n$, I_x is true for the same set of values as J
 - equivalently: if any derivation $\times \mathbf{J}$ using I_x can be converted into a derivation just using $I_1 \dots I_n$, I_x
 - admissibility follows from derivability by stitching in the derivation of ${\it I}_{\rm x}$

On Admissibility and Derivability

Recapping from Tuesday's lecture:

Given a unary judgement **J** defined by inference rules $l_1 \dots l_n$, a new inference rule l_x is

- *derivable* if the conclusion of I_x can be derived via rules $I_1 \dots I_n$ from its premises as local axioms
- *admissible* if the judgement J' defined by $I_1 \dots I_n$, I_x is true for the same set of values as J
 - equivalently: if any derivation $\times \mathbf{J}$ using I_x can be converted into a derivation just using $I_1 \dots I_n$, I_x
 - admissibility follows from derivability by stitching in the derivation of ${\it I}_{\rm x}$

Note the meta-logic/logic distinction. We prove admissibility in the meta-logic of these slides.

Recall M, L, N

Recall our language of matched parentheses

 $\{\epsilon, (), (()), ()(), \ldots\}$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへぐ

On Admissibility into L

In Tuesday's lecture we tried to prove that M and L have the same contents. Proving L is contained in M requires a simultaneous induction on the L/N definition, but each of the cases is easy. The tutorials went over this again.

We then looked at the proof that M is contained in L. Some of the tutors attempted this as well.

Note that this direction is equivalent to showing that each of the rules of **M** would be admissible to **L**. M_E is already present, and M_N is derivable, but M_J is not derivable. We need to do more logical work to show it.

On Induction and Meta-Logic

In the notes I typed out last lecture there was some confusion about induction and the meta-logic.

Gentzen's Natural Deduction calculus gives us a meta-logic we are using to formalise the syntax and semantics of programs. The object logic is the inference rules.

The rule induction is in the meta-logic, which is more general. We can do induction to prove properties that can't be stated as inference rules.

For instance, we could prove two languages/judgements do not overlap by proving that whenever $s J_1$ holds, $\neg(s J_2)$. Inference rules cannot be phrased in terms of negation, but an inductive proof about them can.

We prove this lemma by rule induction on the derivation that s is in **L**, and for all t. That is, we prove

$$\forall s. s \mathsf{L} \longrightarrow (\forall t. t \mathsf{L} \longrightarrow st \mathsf{L})$$

by induction on s L with $P(s) \equiv (\forall t. t L \longrightarrow st L)$.

Prove $\forall s. s \mathrel{\mathsf{L}} \longrightarrow (\forall t. t \mathrel{\mathsf{L}} \longrightarrow st \mathrel{\mathsf{L}})$ by induction on $s \mathrel{\mathsf{L}}$ with $P_0(s) \equiv (\forall t. t \mathrel{\mathsf{L}} \longrightarrow st \mathrel{\mathsf{L}})$. More precisely, we use the $\mathrel{\mathsf{L}}/\mathsf{N}$ simultaneous induction with $P(s) \equiv P_0(s) \land s \mathrel{\mathsf{L}}, \ Q(s) \equiv s \mathrel{\mathsf{N}}.$

Only the P_0 conclusions are tricky, the s L and s N goals are easy.

In the base case $P_0(\epsilon)$: $(\forall t. t \mathbf{L} \longrightarrow \epsilon t \mathbf{L})$.

Inductive case, from L_J : Assume IHs s_1 N, s_2 L and $P_0(s_2)$. Show $P(s_1s_2) \equiv (\forall t. t L \longrightarrow s_1s_2t L.$

The inductive case for N_N is just s **N** and is easy.